Molecules and Matter

Density:

- The density of a substance is defined as its mass per unit volume
- Density can be calculated using the equation:

```
p= m
```

- This is when:
- density (p) is measured in kilograms per metre cubed ($\mathrm{kg} / \mathrm{m}^{3}$)
- mass (m) is measured in kilograms (kg)
- volume (V) is measured in metres cubed (m^{3})
- Objects with a density that is less than the densiy of a given liquid will float in that liquid

Density Tests:

- For a solid object, measure the mass using an electronic balance
- For a regular object (such as a cuboid) measure the lengths of the sides using a millimetre rule. Using this measurement, you can calculate volume
- For an irregular solid, lwer the object into a measuring cylinder of water until it is submerged calculate the volume from the rise in water level
- For a liquid, measure the mass of an empty beaker. Pour liquid into beaker and measure new mass. Subtract mass of beaker to give mass of liquid.

States of Matter:

- All matter contains particles. The difference between the different states of matter is how the particles are arranged:
- in a solid - particles are tightly packed in a regular structure
- in a liquid - particles are tightly packed but free to move past each other
- in a gas - particles are spread out and move randomly

Internal Energy:

When a material is heated or cooled, two changes may happen to the particles within the material:

- Chemical bonds between the particles may form, break or stretch. There is a change in the chemical potential store of energy in the material.
- The material will heat up or cool down as the particles within it gain or lose speed. There is a change in the thermal store of energy within the material.
- The internal energy is the total amount of kinetic energy and potential energy of all the particles in the system.

Specific heat capacity

- The specific heat capacity of a material is the energy required to raise one kilogram (kg) of the material by one degree Celsius (${ }^{\circ} \mathrm{C}$).
- The amount of thermal energy stored or released as the temperature of a system changes can be calculated using the equation: $\Delta E_{t}=m \times c \times \Delta \theta$
This is when:
- change in thermal energy $\left(\Delta E_{t}\right)$ is measured in joules (J)
- mass (m) is measured in kilograms (kg)
- specific heat capacity (c) is measured in joules per kilogram per degree Celsius ($\mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$)
- temperature change $(\Delta \theta)$ is measured in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$

Specific latent heat

- Changing the internal energy of a material will cause it to change temperature or change state:
- the energy required for a particular change in temperature is given by the specific heat capacity
- the energy required for a particular change in state is given by the specific latent heat
- Specific latent heat is the amount of energy required to change the state of 1 kilogram (kg) of a material without changing its temperature.

Specific latent heat

- As there are two boundaries, solid/liquid and liquid/gas, each material has two specific latent heats:
- latent heat of fusion - the amount of energy needed to freeze or melt the material at its melting point
- latent heat of vaporisation - the amount of energy needed to evaporate or condense the material at its boiling point

Particle motion

- The particles in a gas are moving very quickly in random directions.
- The speeds of the particles vary but, on average, they move quicker than they do in liquids and solids.
- This means that it does not take long for a gas to spread out to fill its entire container.
- The smell of an air freshener can spread all around a room very quickly.

Gas pressure

Since the particles in a gas are moving fast and randomly, collisions occur frequently. These collisions may be between two particles, between a particle and the wall of the container, or between a particle and something else in the container.

Gas pressure:

- The pressure caused by a gas can be calculated using the equation:
- This is when:

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

- pressure (p) is measured in newtons per metre squared ($\mathrm{N} / \mathrm{m}^{2}$)
- force (F) is measured in newtons (N)
- area (a) is measured in metres squared $\left(\mathrm{m}^{2}\right)$

Pressure and Temperature:

- The temperature of a gas is a measure of the average kinetic energy of its particles - the higher the temperature, the higher the average kinetic energy.
- If the volume of a container with a gas inside stays the same, the pressure of a gas increases as its temperature increases.
- As the temperature increases, the pressure increases showing that pressure is directly proportional to temperature.

Work and energy

Pressure can be increased by:

- increasing the temperature - this increases the force of each collision
- decreasing the volume - this increases the number of collisions per second

